Jawaban:
Apakah sama antara rangkaian bunga {Merah, Kuning} dengan rangkaian bunga {Kuning, Merah} ? Kasus tersebut dinamakan kombinasi dua unsur dari lima unsur yang tersedia dan dilambangkan dengan :
Permutasi 2 unsur dari 5 unsur ditulis yang merupakan dua kejadian berikut :
- Membuat rangkaian bunga yang memiliki 2 unsur dari 5 unsur yang tersedia dengan tidak
memperhatikan urutan terdapat cara
- Menyusun elemen-elemen himpunan bagian dalam urutan yang berbeda yaitu {MK, KM}, {MB, BM}, {MH, HM}, {MP, PM}, {KB, BK}, {KH, HK}, {KP, PK}, {BH, HB}, {BP, PB}, dan {HP, PH} terdapat dua cara penyusunan atau 2! cara
Baca Juga: Contoh Soal Kombinasi Beserta Jawabannya Paling Lengkap
7). Ada berapa cara 7 orang yang duduk mengelilingi meja dapat menempati ketujuh tempat duduk denganurutan yang berlainan?
Jawaban:
Banyaknya cara duduk ada (7 - 1) ! = 6 ! ® 6 . 5 . 4. 3 . 2 . 1 = 720 cara.
8). 8 anak pada suatu acara saling berjabat tangan satu sama lain. Tentukan banyaknya jabat tangan yang terjadi!
Jawaban :
Kombinasi dengan n = 8 dan r = 2
8 C 3 = 28 Jabat Tangan
9). Untuk mengikuti suatu perlombaan sekolah akan memilih 3 orang siswa dari 12 anak bersedia untuk ikut dalam perlombaan. Tentukan banyaknya kombinasi anak yang diperoleh sekolah dari ke 12 anak tersebut!
Jawaban:
Kombinasi 3 dari 12
12C3 = 220 cara
10). Ada berapa cara bila 4 orang remaja (w,x, y, z) menempati tempat duduk yang akan disusun dalam suatu susunan yang teratur?
Jawaban:
4P4 = 4!
= 4 x 3 × 2 × 1
= 24 cara
11). Menjelang Pergantian kepengurusan BEM STMIK Tasikmalaya akan dibentuk panitia inti sebanyak 2 orang (terdiri dari ketua dan wakil ketua), calon panitia tersebut ada 6 orang yaitu: a, b, c, d, e, dan f. Ada berapa pasang calon yang dapat duduk sebagai panitia inti tersebut?
Jawaban:
6P2 = 6!/(6-2)!
= (6.5.4.3.2.1)/(4.3.2.1)
= 720/24
= 30 cara
Baca Juga: Contoh Soal Kombinasi Lengkap dengan Pembahasan Jawabannya
12). Sekelompok mahasiswa yang terdiri dari 10 orang akan mengadakan rapat dan duduk mengelilingi sebuah meja, ada berapa carakah kelima mahasiswa tersebut dapat diatur pada sekeliling meja tersebut?
Jawaban:
P5 = (10-1)!
= 9.8.7.6.5.4.3.2.1
= 362880 cara
13). Berapa banyak “kata” yang terbentuk dari kata “STMIK”?
Jawaban:
5! = 5 x 4 x 3 x 2 x 1 = 120 buah kata
14). Peluang lulusan PNJ dapat bekerja pada suatu perusahaan adalah 0,75. Jika seorang lulusan PNJ mendaftarkan pada 24 perusahaan, maka berapakah dia dapat diterima oleh perusahaan?
Jawaban:
Frekuensi harapan kejadian A adalah Fh(A) = n × P(A)
Diketahui P(A) = 0,75 dan n = 24. Maka:
Fh(A) = 24 × 0,75 = 18 perusahaan.
15). Terdapat tiga orang (X, Y dan Z) yang akan duduk bersama di sebuah bangku. Ada berapa urutan yang dapat terjadi ?
Jawaban:
nPx = n!
3P3 = 3!
= 1 x 2 x 3
= 6 cara (XYZ, XZY, YXZ, YZX, ZXY, ZYX).
16). Suatu kelompok belajar yang beranggotakan empat orang (A, B, C dan D) akan memilih ketua dan wakil ketua kelompok. Ada berapa alternatif susunan ketua dan wakil ketua dapat dipilih ?
Jawaban:
nPx = (n!)/(n-x)!
4P2 = (4!)/(4-2)!
= 12 cara (AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC) .
17). Ada berapa cara 5 gelas warna yang mengitari meja kecil, dapat menempati kelima tempat dengan urutan yang berlainan?
Jawaban:
Banyaknya cara duduk ada (5 – 1) ! = 4 ! ® 4. 3 . 2 . 1 = 24 cara.
Baca Juga: 30 Contoh Soal PTS Matematika Kelas 1 Semester 2 Kurikulum Merdeka dan Jawabannya
18). Tentukan banyaknya permutasi siklus dari 3 unsur yaitu A, B, C
Jawaban:
Jika A sebagai urutan I : ABC
Jika B sebagai urutan I : BCA
Jika C sebagai urutan III : CAB
Jika banyak unsur n=4 –> A, B, C, D
Jadi banyaknya permutasi siklis dari 4 unsur ( A B C D) adalah 4!/4 = 4.3.2.1/4 = 6
19). Dalam mengadakan suatu pemilihan dengan menggunakan obyek 4 orang pedagang kaki lima untuk diwawancarai, maka untuk memilih 3 orang untuk satu kelompok. Ada berapa cara kita dapat menyusunnya?
Jawaban:
4C3 =4! / 3! (4-3)!
= (4.3.2.1) / 3.2.1.1
= 24 / 6
= 4 cara
20). Suatu warna tertentu dibentuk dari campuran 3 warna yang berbeda. Jika terdapat 4 warna, yaitu Merah, Kuning, Biru dan Hijau, maka berapa kombinasi tiga jenis warna yang dihasilkan.
Jawaban:
nCx = (n!)/(x!(n-x)!)
4C3 = (4!)/(3!(4-3)!)
= 24/6 = 4 macam kombinasi (MKB, MKH, KBH, MBH).
21). Dalam suatu pertemuan terdapat 10 orang yang belum saling kenal. Agar mereka saling kenal maka mereka saling berjabat tangan. Berapa banyaknya jabat tangan yang terjadi.
Jawaban:
10C2 = (10!)/(2!(10-2)!) = 45 jabat tangan
22). Suatu kelompok yang terdiri dari 3 orang pria dan 2 orang wanita akan memilih 3 orang pengurus. Berapa cara yang dapat dibentuk dari pemilihan jika pengurus terdiri dari 2 orang pria dan 1 orang wanita.
Jawaban:
3C2 . 2C1 = (3!)/(2!(3-2)!) . (2!)/(1!(2-1)!) = 6 cara, yaitu : L1 L2 W1 ; L1 L3 W1 ; L2 L3 W1 ; L1 L2 W2 ; L1 L3 W2 ; L2 L3 W2
Baca Juga: 30 Contoh Soal Matematika Kelas 3 Semester 2 dengan Kunci Jawaban
23). Tentukan nilai dari:
a) 12C4
b) 10C3
Jawaban:
a) 12C4
12C4 = 495
b) 10C3
10C3 = 120
24). Dari 7 anggota panitia kemerdekaan dipilih dua orang untuk menjadi ketua dan wakilnya, tanpa menentukan siapa yang menjadi ketua atau wakilnya, maka pilihan yang diperolehnya adalah ....
Jawaban:
C = 7/2
= 7! / 2!(7-2)!
= 5.040/240
= 21 pilihan
25). Jika huruf-huruf pada kata "BOROBUDUR" dipertukarkan, berapa banyak susunan huruf berbeda yang dapat diperoleh?
Jawaban :
Pada kata BOROBUDUR terdapat 9 huruf dengan huruf B diulang 2 kali, huruf O diulang 2 kali, huruf R diulang 2 kali, dan huruf U diulang 2 kali. Banyaknya susunan huruf berbeda yang diperoleh diberikan oleh rumus berikut:
9! / 2!2!2!2!
9x8x7x6x5x4x2x1 / 16
22.680 cara
Demikian tadi contoh soal permutasi dan kombinasi beserta pembahasannya. Semoga bermanfaat!