Tentukan nilai tengahnya, kemudian jumlah data sisi kiri dan sisi kanan harus sama.
Setelah itu, sisakan dua angka di tengah lalu cari rata-ratanya. Berikut rumus median data genap, yaitu:
Me = X n/2 + X (n/2+1) / 2
Contoh soal 1:
Hitung median dari data berikut ini: 4,8,6,2
Pembahasan:
Pertama, kita urutkan datanya dari mulai yang terkecil
Urutan datanya: 2,4,6,8
Data ke-1 : 2
Data ke-2: 4
Data ke-3: 6
Data ke-4: 8
Kedua, hitung banyak data
Banyaknya data = n = 4
Ketiga masukkan ke dalam rumus
Median:
Me = x n/2 + x (n/2 + 1 ) / 2
Me = x 4/2 + x (4/2 + 1 ) / 2
Me = x 2 + x (2+ 1 ) / 2
Me = (x ₂ + x₃ )/ 2
Me = (4 + 6) / 2
Me = 10/2
Me = 5
Jadi median dari data ini adalah 5.
Cara Mencari Median Data Kelompok
Cara mencari median yang selanjutnya adalh dengan cara mencari median data kelompok.
Data berkelompok adalah data yang biasanya disajikan dalam bentuk tabel frekuensi dan data tersebut sudah disusun atau dikelompokan dalam kelas-kelas interval secara matematis.
Median data berinterval dirumuskan sebagai berikut:
Me = Tb + [1/2 n – f kum] I / fm
Keterangan :
Tb = Tepi bawah kelas median – p
P = 0,5
I = Interval
n = jumlah frekuensi
f kum = jumlah frekuensi sebelum kelas median
fm = frekuensi sebelum kelas median
Jika nilai dinyatakan dalam bilangan bulat dan p= 0,05 jika nilai dinyatakan dalam bilangan desimal 1 angka di belakang koma.
Contoh soal 1:
Sebuah pendataan dilakukan oleh sekelompok peneliti untuk mengetahui tinggi badan siswa kelas 1. Hitunglah mean dari data kelompok tinggi badan siswa kelas 1 SDN Bahagia Selalu jika diperoleh data seperti berikut ini:
Pembahasan:
Pertama, kita jumlahkan semua frekuensi yang ada
Jumlah frekuensi = 12 + 18 + 10 = 40
Kedua, tentukan kelas median :
Kelas median adalah data yang mengandung ke-n/2
Maka, kelas media = 40/2= 20
Kelas median ditunjukkan oleh data ke- 20 di mana itu terletak di kelompok ke-2 pada frekuensi ke 2 yang berjumlah frekuensi adalah 30.
Kelompok : ke-2
Interval : 120-130
Pada f sebelum f kelas median = 12
Frekuensi sebelum kelas median (fkum)
Fkum = 12
Sementara frekuensi di mana kelas median berada di fm
Fm= 18
Jarak interval l = 10
Oleh karena datanya dinyatakan dalam bilangan bulat, maka tepi bawah kelas mediannya adalah sebagai berikut.
Nilai bawah dari kelompok ke-3
Interval 120 – 130 adalah 120
Tb = 120-p
Karena bilangan bulat maka p= 0,5
Tb = 120 – 0,5 = 119,5
Dengan demikian, mediannya dirumuskan sebagai berikut.
Me = Tb+ [ ½ n- fkum] l / fm
Me = 119,5 + [ ½ 20- 12 ]. 10 / 10
Me = 119,5 + [10 – 12 ,] 10 / 10
Me = 119,5 + (-2).10 / 10
Me = 119,5 – 20 / 10
Me = 119,5 – 2
Me = 117,5
Jadi, median dari data tersebut adalah 117,5.
Baca Juga: Cara Menghitung Modus Dalam Statistika yang Mudah Untuk Pelajar
Baca berita update lainnya dari Sonora.id di Google News.